Math, asked by saurabhsy722, 2 months ago

a(xdy+2ydx)=xydy solve the differential equation​

Answers

Answered by TheValkyrie
29

Answer:

\sf 2a\times log |x|=y-a\times log|y|+C

Step-by-step explanation:

Given:

\sf The\:differential\:equation\: a(x\:dy+2y\:dx)=xy\:dy

To Find:

The solution for the given differential equation

Solution:

\sf  a(x\:dy+2y\:dx)=xy\:dy

\sf \implies ax\:dy+2ay\:dx=xy\:dy

Dividing the whole equation by dx,

\sf \implies ax\: \dfrac{dy}{dx} +2ay=xy\: \dfrac{dy}{dx}

\sf \implies 2ay=xy\: \dfrac{dy}{dx} -ax\: \dfrac{dy}{dx}

Taking x dy/dx as common,

\sf \implies 2ay=x\:\dfrac{dy}{dx} (y-a)

Making it in the form of variable separable,

\sf \implies \dfrac{2a}{x} =\dfrac{dy}{dx} \: \dfrac{y-a}{y}

\sf \implies \dfrac{2a}{x} \: dx=\dfrac{y-a}{y} \: dy

\sf \implies \dfrac{2a}{x} \: dx=\bigg(1-\dfrac{a}{y}\bigg) \: dy

Integrating on both sides,

\displaystyle \sf \int\limits {\dfrac{2a}{x} } \, dx =\int\limits {\bigg(1-\dfrac{a}{y}\bigg) } \, dy

\displaystyle \sf 2a \int\limits {\dfrac{1}{x} } \, dx =\int\limits {1} \, dy -a\int\limits {\dfrac{1}{y} } \, dy

\sf \implies 2a\times log |x|=y-a\times log|y|+C

This is the solution of the given differential equation.

Answered by anujghatak
0

d^4y/dx^4-y=0 differential equations

Similar questions