Math, asked by Anushkad3145, 10 months ago

A1/3 + b1/3 + c1/3 = 0, then (a + b + c)6 is equal to:

Answers

Answered by ravi413131
2

Answer:

see in image

Step-by-step explanation:

(a+b+c)6=0 hence proved

Attachments:
Answered by harendrachoubay
1

The value of (a+b+c)^6=0

Step-by-step explanation:

We have,

a^{1/3}+b^{1/3}+c^{1/3}=0

To find, the value of (a+b+c)^6=?

(a^{1/3}+b^{1/3}+c^{1/3})^3

Using the formula,

(x+y+z)^3=x^{3}+y^{3}+z^{3}+(x+y+z)(xy+yz+zx)

(a+b+c)^6=[(a+b+c)^3]^2

=[a^{3}+b^{3}+c^{3}+(a+b+c)(ab+bc+ca)]^2   ..... (1)

(a^{1/3}+b^{1/3}+c^{1/3})^3

=(a^{\dfrac{1}{3}})^3+(b^{\dfrac{1}{3}})^3+(b^{\dfrac{1}{3}})^3+(a^{\dfrac{1}{3}}+b^{\dfrac{1}{3}}+z^{\dfrac{1}{3}})(a^{\dfrac{1}{3}}b^{\dfrac{1}{3}}+b^{\dfrac{1}{3}}c^{\dfrac{1}{3}}+c^{\dfrac{1}{3}}a^{\dfrac{1}{3}})

=a+b+c+(0})(a^{\dfrac{1}{3}}b^{\dfrac{1}{3}}+b^{\dfrac{1}{3}}c^{\dfrac{1}{3}}+c^{\dfrac{1}{3}}a^{\dfrac{1}{3}})

∴ a + b + c = 0

The value of (a+b+c)^6=0

Hence, the value of (a+b+c)^6=0

Similar questions