Math, asked by mayalove16, 1 year ago

a1 = 5; a4 = 9 1/2; find a2, a3

Answers

Answered by ashishks1912
41

GIVEN :

The values a_1=5 , a_4=9\frac{1}{2}

TO FIND :

The values of a_2 and a_3

SOLUTION :

Given that the first term and fourth terms of the sequence is a_1=5 , a_4=9\frac{1}{2}.

The formula for the nth term of the Arithmetic Sequence is given by:

a_n=a_1+(n-1)d

To find the terms a_2 and a_3:

Put n=4 in the above formula,

a_4=9\frac{1}{2}=5+(4-1)d

\frac{19}{2}=5+3d

3d=\frac{19}{2}-5

3d=\frac{19-10}{2}

3d=\frac{9}{2}

d=\frac{9}{2}\times \frac{1}{3}

d=\frac{3}{2}

∴ the common difference d is \frac{3}{2}

Put n=2 , a_1=5 and d=\frac{3}{2} in the formula a_n=a_1+(n-1)d,

a_2=5+(2-1)(\frac{3}{2})

a_2=5+1(\frac{3}{2})

a_2=\frac{10+3}{2}

a_2=\frac{13}{2}

Put n=3 , a_1=5 and d=\frac{3}{2} in the formula a_n=a_1+(n-1)d,

a_3=5+(3-1)(\frac{3}{2})

a_3=5+2(\frac{3}{2})

a_3=5+3

a_3=8

∴ The values are a_2=\frac{13}{2} and a_3=8.

Answered by soniamolthomas007
6

Answer:

a1 =5 a4 =9 1/2

a1 =a=5 ...........(1)

a4

=a+3d=5+3d=9

2

1

.......(2)

Equation (1)-(2), gives

−3d=5−

2

19

=

2

10−19

=

2

−9

⇒d=

2

3

∴a

2

=a+d=5+

2

3

=

2

13

∴a

3

=a+2d=5+2×

2

3

=8

∴a

2

=

2

13

,a

3

=8

Similar questions