Math, asked by nishaagarwalu9761, 1 year ago

a1 ,a2 ,a3, a4 ,a5 are first five terms of an AP . Such that a1 +a2+a3 =-12 and a1 a2a3 =8 . Find the first term and difference

Answers

Answered by AV539
1
Hope it helped you .
Attachments:
Answered by mysticd
4

 Let \: a_{1} = (a-d), a_{2} = a , a_{3} = a+d, \\a_{4} = a+2d, \: and \: a_{5} = a+3d \: are \: first \\five \: terms \: of \: an \: A.P

 a_{1} + a_{2} + a_{3}  = -12 \: (given)

 \implies (a-d) + a + (a+d) = -12

 \implies a-d + a + a+d= -12

 \implies 3a = -12

 \implies a = \frac{-12}{3}

 \implies a = - 4  \: --(1)

 a_{1} a_{2} a_{3} = 8 \: (given)

 \implies (a-d)a (a+d) = 8

 \implies (a^{2}-d^{2})a  = 8

 \implies [ (-4)^{2} - d^{2} ] (-4) = 8

 \implies [ (-4)^{2} - d^{2} ]  = \frac{8}{-4}

 \implies 16 - d^{2}  = -2

 \implies - d^{2}  = -2 - 16

 \implies - d^{2}  = - 18

 \implies d^{2}  = 18

 \implies d = \pm \sqrt{18}

 \implies d = \pm 3\sqrt{2}\: ---(2)

Case 1:

/* If a = -4, and d = 3√2 */

 First \:term \: in \: A.P = a - d \\= -4 - 3\sqrt{2}

 \red{Common \: difference (d)} = \green {3\sqrt{2}}

Case 2:

/* If a = -4, and d = -3√2 */

 First \:term \: in \: A.P = a - d \\= -4 - (-3\sqrt{2})\\= -4 + 3\sqrt{2}

 \red{Common \: difference (d)} = \green {-3\sqrt{2}}

•••♪

Similar questions