Math, asked by StrongGirl, 9 months ago

a1 a2 a3 a4 a5 are in ap. Sum of the terms is equal to 30.product of the terms is equal to 3840. Find product of first and last term.?

Answers

Answered by Anonymous
20

AnswEr :

Let d be the common difference of the AP.

Consider the AP : a - 2d, a - d, a, a + d, a + 2d

According to the Question,

Sum of the five terms is 30.

 \longrightarrow \:  \sf \: (a - 2d) + (a - d) + a + (a + d) + (a + 2d) = 30 \\  \\  \longrightarrow \sf \: 5a = 30 \\  \\  \longrightarrow \boxed{ \boxed{ \sf \: a = 6}}

Product of the terms is 3840.

 \longrightarrow \sf (a - 2d)(a - d)(a)(a + d)(a - 2d) = 3840 \\  \\  \longrightarrow \sf \: a( {a}^{2}  -  {d}^{2} )( {a}^{2}  -  {4d}^{2} ) = 3840 \\  \\  \longrightarrow \sf \: (36 -  {d}^{2} )(36 -  {4d}^{2} ) = 640 \\  \\  \longrightarrow \sf \: 1296 - 144 {d}^{2}  -  {36d}^{2}  +  {4d}^{4}  = 640 \\  \\  \longrightarrow \sf \:  {4d}^{4}  -  {180d}^{2}   + 656 = 0 \\  \\  \longrightarrow \sf \:  {d}^{4}  - 45 {d}^{2}  + 164 = 0 \\  \\  \longrightarrow \sf \:  {d}^{4}  -  {41d}^{2}  -  {4d}^{2}  + 164 = 0 \\  \\  \longrightarrow \sf  {d}^{2} ( {d}^{2}  - 41) - 4( {d}^{2}  - 41) = 0 \\  \\ \longrightarrow  \sf \: ( {d}^{2}  - 41)( {d}^{2}  - 4 )= 0 \\  \\  \longrightarrow \boxed{ \boxed{ \sf d  =  \pm \sqrt{41} or \pm 2}}

Therefore,

When d = ±2 and a = 6,

 \implies \sf \: (a - 2d)(a + 2d)] \\  \\  \implies \:  \sf \: a^2 - 4d^2\\  \\  \implies \sf 20

When d = ±√41 and a = 6,

 \implies \sf \: (a - 2d)( a + 2d)  \\  \\  \implies \:  \sf \: a^2 - 4d^2 \\  \\  \implies \sf \: -128

Answered by EnchantedGirl
43

GIVEN :- a1 a2 a3 a4 a5 are in ap, Sum of the terms is equal to 30& product of the terms is equal to 3840.

 \\

REQUIRED TO FIND :- Product of first and last term.

\\

✍️SOLUTION:-

\\

Let the AP be ,a-2d ,a-d ,a ,a+d ,a+2d.

\\

» Sum of the terms = 30.

\implies (a-2d )+( a-d )+ (a )+(a+d )+(a+2d). = 30.

\implies 5a = 30.

 \implies  \boxed{\: a = 6.}

\\

» Product of the terms = 3840.

 \implies \: ( a {}^{2}  - 4d {}^{2} )a(a {}^{2}  - d {}^{2} ) = 3840 \\  \\  \implies \: (36 - 4d {}^{2} )(6)(36 - d {}^{2} ) = 3840. \\  \\  \implies \:  (9 - d {}^{2} )(36 - d {}^{2} ) = 160. \\  \\  \implies \: 324 - 45d {}^{2}  + d {}^{4}  = 160 \\  \\  \implies \: d {}^{4}  - 45d {}^{2}  + 164 = 0 \\  \\  \implies \: d {}^{2} (d {}^{2}  - 41) - 4(d {}^{2}  - 41) = 0 \\  \\  \implies \: d {}^{2}  = 4. \\  \\  \boxed{ \implies \: d =  + or -  \: 2}

Now,

 \implies \: a {}^{2}  - 4d {}^{2}  \: is \: the \: product. \\  \\  \implies \: 6 {}^{2}  - 4 \times 4 = 36 - 16 = 20.

\\

Hence the answer is ,

\\

 \implies \:  \boxed{product \:  = 20.}

HOPE IT HELPS :)

Similar questions