Math, asked by sreyasatheesh122, 9 months ago

a1 a2 a3 are in AP if a1+a2+ a3 is equal to 27 and a1 square + a2 square + a3 square is equal to 275 find a1 a2 a3

Answers

Answered by AnirudhaM5
0

Answer:

Try solving according to this:

a

6

is

41

11

.

Step-by-step explanation:

Given:

\frac{a_1+a_2+a_3+...+a_p}{a_1+a_2+a_3+...+a_q}=\frac{p^2}{q^2}

a

1

+a

2

+a

3

+...+a

q

a

1

+a

2

+a

3

+...+a

p

=

q

2

p

2

we know that,

S_n=\frac{n}{2}(2a+(n-1)d)S

n

=

2

n

(2a+(n−1)d)

So,

\frac{\frac{p}{2}(2a+(p-1)d)}{\frac{q}{2}(2a+(q-1)d)}=\frac{p^2}{q^2}

2

q

(2a+(q−1)d)

2

p

(2a+(p−1)d)

=

q

2

p

2

\frac{2a+(p-1)d}{2a+(q-1)d}=\frac{p}{q}

2a+(q−1)d

2a+(p−1)d

=

q

p

\frac{2a+pd-d}{2a+qd-d}=\frac{p}{q}

2a+qd−d

2a+pd−d

=

q

p

(2a+pd-d)q=(2a+qd-d)p(2a+pd−d)q=(2a+qd−d)p

2aq+pqd-qd=2ap+pqd-pd2aq+pqd−qd=2ap+pqd−pd

2aq-2ap=-pqd+qd+pqd-pd2aq−2ap=−pqd+qd+pqd−pd

2a(q-p)=(q-p)d2a(q−p)=(q−p)d

2a=d2a=d

Now, using a_n=a+(n-1)da

n

=a+(n−1)d

\frac{a_6}{a_{21}}=\frac{a+(6-1)d}{a+(21-1)d}

a

21

a

6

=

a+(21−1)d

a+(6−1)d

\frac{a_6}{a_{21}}=\frac{a+5(2a)}{a+20(2a)}

a

21

a

6

=

a+20(2a)

a+5(2a)

\frac{a_6}{a_{21}}=\frac{a+10a}{a+40a}

a

21

a

6

=

a+40a

a+10a

\frac{a_6}{a_{21}}=\frac{11a}{41a}

a

21

a

6

=

41a

11a

\frac{a_6}{a_{21}}=\frac{11}{41}

a

21

a

6

=

41

11

Therefore, Value of \frac{a_6}{a_{21}}\:is\:\frac{11}{41}

a

21

a

6

is

41

11

Answered by tofailahmad379
3

Answer:

a1+a2+a3=27 (1)

a1^2+a2^2+a3^2=275 (2)

Let assume that

a1=a-d

a2=a

a3=a+d

.

.

.

.

Put these assumptions in eq 1

(a-d)+a+(a+d) =27

a-d+a+a+d=27

3a=27

a=9 (3)

Now put the above assumption in eq 2

(a-d)^2+a^2+(a+d)^2=275

a^2-2ad+d^2+a^2+a^2+2ad+d^2=275

3a^2+2d^2=275

Put the of a from eq3

3(9)^2+2d^2=275

243+2d^2=275

2d^2=275-243

2d^2=32

d^2=32/2=16.

d=4. (4)

Put the value of a and d to find a1, a2, a3

a1=a-d=9-4=5

a2=a=9

a3=a+d=9+4=13

So the sequence is

5,9,13,.........

Similar questions