Math, asked by hitanshivaghora38, 16 hours ago

a²-11a-42 please give me answer​

Answers

Answered by prajwalsapkal96
0

Step-by-step explanation:

So,

a²-11a-42

p + q = -42

pq = 1 (-42) = -42

1, -42

2, -21

3, -14

4, -7

Calculate the sum for each pair.

1−42=−41

2−21=−19

3−14=−11

6−7=−1

The solution is the pair that gives sum −11.

p=−14

q=3

Rewrite a^2−11a−42 as (a^2-14a)+(3a−42).

(a^2-14a) + (3a−42)

a(a−14) + 3(a−14)

So here we came with the conclusion that:

(a-14) (a+3) is your required answer

Answered by ChanchalaVerma
1

Given: Quadratic Equation a^{2} - 11a-42

To Find: The roots/zeroes of the Quadratic Equation a^{2} - 11a-42.

Solution:

Quadratic Equation a^{2} - 11a-42

  • Here, we will solve this question by using the quadratic formula \frac{-b\pm\sqrt{b^{2} - 4ac} }{2a}  (Note - You can solve this by splitting the middle term too.)

  • Identify the coefficients a,b and c of the quadratic equation.

a=1, b=-11, c=-42

  • Substitute a=1, b=-11, c=-42 into the quadratic formula \frac{-b\pm\sqrt{b^{2} - 4ac} }{2a}.

a=\frac{-(-11)\pm\sqrt{(-11)^{2}-4\times1\times(-42) } }{2\times1}

  • Any expression multiplied by 1 remains the same:

a=\frac{-(-11)\pm\sqrt{(-11)^{2}-4\times(-42) } }{2\times1}

  • Any expression multiplied by 1 remains the same:

a=\frac{-(-11)\pm\sqrt{(-11)^{2}-4\times(-42) } }{2}

  • When two minus are close, they turn into plus.

a=\frac{11\pm\sqrt{(-11)^{2}-4\times(-42) } }{2}

  • Evaluate the power.

a=\frac{11\pm\sqrt{(121)-4\times(-42) } }{2}

  • Multiply the numbers

a=\frac{11\pm\sqrt{121+168 } }{2}

  • Add the numbers:

a=\frac{11\pm\sqrt{289 } }{2}

  • Evaluate the square root:

a=\frac{11\pm17 }{2}

  • Separate the solutions:

a = \frac{11+17}{2} \\a = \frac{11-17}{2}

  • Solve for a

a = \frac{28}{2} \\a = \frac{-6}{2}

  • Divide now:

a = 14\\a = -3

Final Answer:

Hence, the roots of the quadratic equation a^{2} - 11a-42 are 14 and -3.

Similar questions