Math, asked by Ujjwalraj5574, 1 year ago

a2 - 3a + 1=0
find :-
a + 1/a
a2 + 1/a2
a2 = square of a

Answers

Answered by harshitha100
67
if it helps plz mark me as a brainlist
Attachments:
Answered by LovelyG
167

Answer:

\large{\underline{\boxed{\sf  \left( a +\dfrac{1}{a} \right)  = 3}}}

\large{\underline{\boxed{\sf a^2 + \dfrac{1}{a^2} =7}}}

Step-by-step explanation:

Given that ;

a² - 3a + 1 = 0

⇒ a² - 3a = - 1

⇒ a(a - 3) = - 1

⇒ a - 3 = \sf -\dfrac{1}{a}

⇒ a - 3 + \sf \dfrac{1}{a} = 0

⇒ a + \sf \dfrac{1}{a} = 3

Hence, the answer is 3.

_______________________

(ii) To find the value of a² + \sf \dfrac{1}{a^2}

 \tt \left( a  + \dfrac{1}{a} \right)  =3

On squaring both sides ;

 \tt \left( a  +  \frac{1}{a} \right)^{2}  = (3) {}^{2}  \\  \\ \rightarrow \tt a^{2}  +  \frac{1}{ {a}^{2} }  + 2 \: . \:a  \:. \:  \frac{1}{a}    = 9 \\  \\ \rightarrow \tt a^{2}  +  \frac{1}{ {a}^{2} }  + 2 = 9 \\  \\ \rightarrow \tt a^{2}  +  \frac{1}{ {a}^{2} }  = 9 - 2 \\  \\ \rightarrow \tt a^{2}  +  \frac{1}{ {a}^{2} }  = 7

Hence, the answer is 7.

Similar questions