Math, asked by singhbob2018, 9 months ago

a2-4b2+a3-8b3-(a-2b)2
Factorise

Answers

Answered by imanshikarai58
17

Answer:

(a+2b)+(a+2b)(a^2-2ab+4b^2)

=(a+2b)(1+a^2-2ab+4b^2)

a^3+b^3=(a+b)(a^2-ab+b^2). since a^3+8b^3=

a^3+(2b)^3

Answered by harendrachoubay
31

Thus,  the factorisation of a^2-4b^2+a^3-8b^3-(a-2b)^2 is equal to(a-2b)(a^{2}+4b^2+2ab+4b).

Step-by-step explanation:

We have,

a^2-4b^2+a^3-8b^3-(a-2b)^2

To find, the factorisation of a^2-4b^2+a^3-8b^3-(a-2b)^2 = ?

a^2-4b^2+a^3-8b^3-(a-2b)^2

= a^2-(2b)^2+a^3-(2b)^3-(a-2b)^2

= (a+2b)(a-2b)+(a-2b)(a^{2}+a(2b)+(2b)^2 )-(a-2b)^2

Using the algebraic identity,

a^{2}-b^{2}=(a+b)(a-b) and

a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})

= (a+2b)(a-2b)+(a-2b)(a^{2}+2ab+4b^2 )-(a-2b)(a-2b)

Taking (a - 2b) as common, we get

= (a-2b)[(a+2b)+(a^{2}+2ab+4b^2 )-(a-2b)]

= (a-2b)(a+2b+a^{2}+2ab+4b^2 -a+2b)

= (a-2b)(a^{2}+4b^2+2ab+4b)

The factorisation of a^2-4b^2+a^3-8b^3-(a-2b)^2 =(a-2b)(a^{2}+4b^2+2ab+4b)

Thus,  the factorisation of a^2-4b^2+a^3-8b^3-(a-2b)^2 is equal to(a-2b)(a^{2}+4b^2+2ab+4b).

Similar questions