Math, asked by prathamsonar05, 10 months ago

a²-5a-14 upon a²-4. into. 20²-a-6 upon 20²-11a-21​

Answers

Answered by vinitajain62
4

Answer:

 \frac{ {a}^{2}  - 5a - 14}{ {a }^{2}  - 4}  \times  \frac{ {20}^{2} - a - 6 }{ {20}^{2}  - 11a - 21}  \\  =  \frac{ {a}^{2}  - 7a + 2a - 14}{ {a}^{2} - 4 }  \times   \frac{ {20}^{2}  - a - 6}{ {20}^{2} - 11a - 21 }  \\   =  \frac{a(a - 7) + 2(a - 7)}{ {(a)}^{2}  - ( {2})^{2} }  \times  \frac{400 - a - 6 }{400 - 11a - 21} \\  =  \frac{(a + 2)(a - 7)}{(a + 2)(a - 2)}  \times  \frac{400 - a - 3 \times 2}{400 - 11a - 3 \times 7}   \\  =  \frac{a - 7}{a - 2}  \times  \frac{ - 2a}{ - 77a}  \\  =  \frac{ - 2a(a - 7)}{ - 77a(a - 2)}  \\  =  \frac{  {( - 2a)}^{2}  + 14a}{  { ( - 77a)}^{2} + 154a  }  \\  =  \frac{4 {a}^{2}  + 14a}{5921 {a}^{2}  + 154a}

so, mate above is your answer.

Hope it helps..

plz mark me as brainliest...

Similar questions