(a2-63)3 +(62-c2,3 +(c2-a2)3
(a-b)3 +(b-c)3 +(c-a)3
= (a + b)(b + c)(c + a)
Answers
Answered by
2
Answer:
L.H.S
by using a2-b2=(a+b) (a-b)
[(a+b)(a-b)]3+[(b+c)(b-c)]3+[(c+a)(c-a)]3
now let a=[(a+b)(a-b)]3,b=[(b+c)(b-c)]3,c=[(c+a)(c-a)]3
by adding a,b,&c we get
=[(a+b)(a-b)]+[(b+c)(b-c)]+[(c+a)(c-a)]
=a2-ab+ab-b2+b2-bc+bc-c2+c2+ac-ac-a2
=o
if a+b+c=o then a3+b3+c3=3abc
=>3[(a+b)(a-b)(b+c)(b-c)(c+a)(c-a)]
=>o
=>L.H.S=R.H.S
hence proved
Similar questions