Math, asked by gdiya818, 7 months ago

(a²-a)(4a²-4a-5)-6 factorise please​

Answers

Answered by aryan073
1

Step-by-step explanation:

( {a}^{2}  - a)( {4a}^{2}  - 4a - 5) - 6

 =  {a}^{2} ( {4a}^{2}  - 4a - 5) - a( {4a}^{2}  - 4a - 5) - 6 = 0

 =  {4a}^{4}  -  {4a}^{3}  - 5 {a}^{2}  +  {5a}^{3}   +  {4a}^{2}  + 5a - 6 = 0

 =  {4a}^{4}   +  {a}^{3}   -  {a}^{2}  + 5a - 6 = 0

 {a}^{2} ( {4a}^{2}  + a - 1) + 5a - 6 = 0

we \: get \: two \: equation \: now

 {a}^{2}  + 5a - 6 = 0 ....(1)\:  \:  \:  \:  \:  \:  \: and \:  \:  \:  \:  \:  {4a}^{2}  + a - 1 = 0.....(2)

 \:  \:  \ {a}^{2}  + 6a - a - 6 = 0 \:  \:  \:  \:  \:  \: and \:  {4a}^{2}  + a - 1 = 0

 \:  \:  \:  \bf{ {a}^{2}  + 6a - a - 6 = 0}

 \:  \:  \bf{a(a + 6) - 1(a + 6) = 0}

 \:  \bf{(a + 6) = 0 \:  \:  \: and \: (a - 1) = 0}

 \:  \:  \:  \implies \bf{ \: a =  - 6 \:  \: and \: a = 1}

 \:  \:  \:  \bf{ {4a}^{2}   + a - 1 = 0}.......(2)

 \:  \:  \to\bf{x =  \frac{ -b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }

 \:  \:  \:  \: \to \bf{x =  \frac{ - 1 \pm \sqrt{ {1}^{2}  - 4( - 1)} }{2 \times 4} }

 \:  \:  \:  \to \bf{x =  \frac{ - 1 \pm \sqrt{5} }{8} }

\huge{\blue{\red{Answer}}}

 \:  \:  \:  \:  \:   \boxed { \bf  \pink{x =   \frac{ - 1 +  \sqrt{5} }{8} \:  \: and \: x =  \frac{ - 1 - \sqrt{5}  }{8}  }}

 \:  \:  \:  \:  \boxed  { \bf \red{x =  - 6 \:  \: and \: x = 1}}

Similar questions