a2(b+c), b2(c+a), c2(a+b) are in A.P., then either a,b,c are inA.P. or
rn
1. ab+bc+ca=0 2. a+b+c=0
rn
3. a-b-c=0 4. a-b+c=0
Answers
Answered by
42
a, b, c are in A.P.
⇒b-a=c-b
⇒2b=c+a..........(i)
Now,
a2(b+c), b2(c+a), c2(a+b) are in A.P.
⇒ b2(c+a)-a2(b+c)= c2(a+b)- b2(c+a)
⇒ b2c+ b2a-a2b- a2c= c2a+ c2b- b2c-a b2
⇒ b2c+ b2c+ b2a+a b2-a2b- a2c-c2a- c2b=0
⇒ 2b2c-a2b+2a b2- c2b=ac(c+a)
⇒ ba(2b-a)+bc(2b-c)=ac(c+a)
⇒ bac+bca=ac(c+a) [From(i)]
⇒ 2abc=ac(c+a)
⇒ 2b=c+a
which is true.
Hence, a, b, c are in A.P.
I hope this will help you
if not then comment me
⇒b-a=c-b
⇒2b=c+a..........(i)
Now,
a2(b+c), b2(c+a), c2(a+b) are in A.P.
⇒ b2(c+a)-a2(b+c)= c2(a+b)- b2(c+a)
⇒ b2c+ b2a-a2b- a2c= c2a+ c2b- b2c-a b2
⇒ b2c+ b2c+ b2a+a b2-a2b- a2c-c2a- c2b=0
⇒ 2b2c-a2b+2a b2- c2b=ac(c+a)
⇒ ba(2b-a)+bc(2b-c)=ac(c+a)
⇒ bac+bca=ac(c+a) [From(i)]
⇒ 2abc=ac(c+a)
⇒ 2b=c+a
which is true.
Hence, a, b, c are in A.P.
I hope this will help you
if not then comment me
Answered by
56
Step-by-step explanation:
mark as brainiest
☺️
Attachments:
Similar questions