a2-b2=3, ab=2, find a+b
Answers
Answered by
17
ANSWER.
- a + b = ±3.
SOLUTION.
Given –
→ a² - b² = 3 – (i)
→ ab = 2 – (ii)
From (ii), we get,
→ b = 2/a
Substituting the value of b in (i), we get,
→ a² - (2/a)² = 3
→ (a⁴ - 4)/a² = 3
→ a⁴ - 4 = 3a²
→ a⁴ - 3a² - 4 = 0
Let u = a²,
→ u² - 3u - 4 = 0
→ u² - 4u + u - 4 = 0
→ u(u - 4) + 1(u - 4) = 0
→ (u + 1)(u - 4) = 0
Substitute back u = a², we get,
→ (a² + 1)(a²- 4) = 0
→ (a² + 1)(a + 2)(a - 2) = 0
Therefore,
→ (a² + 1) = 0 or (a + 2) = 0 or (a - 2) = 0
So,
→ a = √-1, 2, -2
But we omit complex roots.
So, a = ±2
When a = 2,
→ ab = 2
→ 2b = 2
→ b = 1
When a = -2,
→ ab = 2
→ -2b = 2
→ b = -1
So,
→ a + b = 2 + 1, -2 - 1
→ a + b = ±3 (Answer)
Similar questions