Math, asked by rosankumarsethi8f, 9 months ago

(a²-b²)(a²+b²)- (a²-b²)²​

Answers

Answered by Anonymous
9

» Question :

Simplify :

\green{\sf{\big(a^{2} - b^{2}\big)\big(a^{2} + b^{2}\big) - \big(a^{2} + b^{2}\big)^{2}}}

» We Know :

  • \sf{a^{2} - b^{2} = (a + b)(a - b)}

  • \sf{a^{2} - b^{2} = a^{2} + b^{2} - 2ab}

» Solution :

\purple{\sf{\big(a^{2} - b^{2}\big)\big(a^{2} + b^{2}\big) - \big(a^{2} + b^{2}\big)^{2}}}

Using the identity ,

\sf{a^{2} - b^{2} = (a + b)(a - b)}

\sf{a^{2} - b^{2} = a^{2} + b^{2} - 2ab}

We Get :

\sf{\Rightarrow \big(a^{2} \times a^{2} + a^{2} \times b^{2} - a^{2} \times b^{2} \times - b^{2} \big) - \big(a^{2} + b^{2}\big)^{2}}

\\

\sf{\Rightarrow \big(a^{4} + \cancel{a^{2}b^{2}} - \cancel{a^{2}b^{2}} - b^{4} \big) - \big(a^{2} + b^{2}\big)^{2}}

\\

\sf{\Rightarrow \big(a^{4} - b^{4} \big) - \big(a^{2} + b^{2}\big)^{2}}

\\

\sf{\Rightarrow \big(a^{4} - b^{4} \big) - \left(\big(a^{2}\big)^{2} - 2 \times a^{2} \times b^{2} +  \big(b^{2}\big)^{2}\right)}

\\

\sf{\Rightarrow \big(a^{4} - b^{4} \big) - \left(a^{4} - 2a^{2}b^{2} +  b^{4}\right)}

\\

\sf{\Rightarrow \cancel{a^{4}} - b^{4} - \cancel{a^{4}} + 2a^{2}b^{2} - b^{4}}

\\

\sf{\Rightarrow - b^{4} + 2a^{2}b^{2} - b^{4}}

\\

\purple{\sf{\Rightarrow 2a^{2}b^{2} - 2b^{4}}}

Hence , \green{\sf{\underline{\boxed{\therefore \big(a^{2} - b^{2}\big)\big(a^{2} + b^{2}\big) - \big(a^{2} + b^{2}\big)^{2} = 2a^{2}b^{2} - 2b^{4}}}}}

Alternative Method :

\purple{\sf{\big(a^{2} - b^{2}\big)\big(a^{2} + b^{2}\big) - \big(a^{2} + b^{2}\big)^{2}}}

Using the identity ,

\sf{a^{2} - b^{2} = (a + b)(a - b)}

\sf{a^{2} - b^{2} = a^{2} + b^{2} - 2ab}

We Get :

\sf{\Rightarrow \big(a^{2}\big)^{2} - \big(b^{2}\big)^{2} - \big(a^{2} + b^{2}\big)^{2}}

\\

\sf{\Rightarrow a^{4} - b^{4} - \big(a^{2} + b^{2}\big)^{2}}

\\

\sf{\Rightarrow a^{4} - b^{4} - \left(\big(a^{2} \big)^{2} - 2 \times a^{2} \times b^{2} + \big(b^{2}\big)^{2}\right)}

\\

\sf{\Rightarrow \cancel{a^{4}} - b^{4} - \cancel{a^{4}} + 2a^{2}b^{2} - b^{4}}

\\

\sf{\Rightarrow - b^{4} + 2a^{2}b^{2} - b^{4}}

\\

\purple{\sf{\Rightarrow 2a^{2}b^{2} - 2b^{4}}}

Hence ,

\green{\sf{\underline{\boxed{\therefore \big(a^{2} - b^{2}\big)\big(a^{2} + b^{2}\big) - \big(a^{2} + b^{2}\big)^{2} = 2a^{2}b^{2} - 2b^{4}}}}}

» Additional information :

  • \sf{(a + b)^{2} = a^{2} + b^{2} + 2ab}

  • \sf{a^{2} + b^{2} = (a + b)^{2} - 2ab}

  • \sf{a^{2} + b^{2} = (a - b)^{2} + 2ab}
Similar questions