(a²-b²) (a²+b²) – (a²-b²)²
Answers
Solution :
(a² - b²)( a² + b²) - (a² - b²) ²
> [ a⁴ + a²b² - b²a² - b⁴ ] - [ a⁴ - 2a²b² + b⁴ ]
> [ a⁴ - b⁴ ] - [ a⁴ - 2a²b² + b⁴ ]
> a⁴ - b⁴ - a⁴ + 2a²b² - b⁴
> 2a²b² - b⁴
> b²( 2a² - b²)
This is the required answer.
______________________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
______________________________________
Step-by-step explanation:
Solution :
(a² - b²)( a² + b²) - (a² - b²) ²
> [ a⁴ + a²b² - b²a² - b⁴ ] - [ a⁴ - 2a²b² + b⁴ ]
> [ a⁴ - b⁴ ] - [ a⁴ - 2a²b² + b⁴ ]
> a⁴ - b⁴ - a⁴ + 2a²b² - b⁴
> 2a²b² - b⁴
> b²( 2a² - b²)
This is the required answer.
______________________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
______________________________________