(a²+b²) (a²-b²) + (b²+c²) (b²-c²) + (c²+a²) (c²-a²)
simpilfy it
Answers
Answered by
2
we use the fact that if a+b+c = 0, then a³+b³+ c³ = 3 a b c.
(a² - b²) + (b² - c²) + (c² - a²) = 0...
also (a-b) + (b-c)+ (c-a) = 0
we assume that a ≠b ≠ c.
hence,
(a²-b²)³+(b²-c²)³+(c²-a²)³ ÷ (a-b)³+b-c)³+(c-a)³
= 3 (a² - b²) (b² - c²) (c² - a²) / [ 3 (a - b) (b - c) ( c -a) ]
= ( a+b) (b + c) ( c +a)
∵ a² - b² = (a -b) (a+b) and similarly other terms.
Similar questions