(a²-b²-c²+d²)²-4(ad-bc)²
full explanation
Answers
Answer:
make me branalist please
Step-by-step explanation:
According to question, the given equation is
x2(a2 + b2)+ 2x (ac + bd) +(c2 + d2)= 0 .
Let D be the discriminant of this equation.
Therefore,D = 4(ac + bd)2 - 4(a2 + b2)(c2 + d2)
⇒ D = 4 [(ac+ bd)2 - (a2 + b2) (c2 + d2)]
⇒ D = 4 [a2c2 + b2d2 + 2ac.bd - a2c2 - a2d2 - b2c2 - b2d2]
⇒D = 4 [2ac.bd - a2d2 - b2c2] = - 4[a2d2 + b2c2 - 2ad.bc] = -4(ad - bc)2
It is given that ad ≠ bc.
⇒ ad - bc ≠ 0
⇒ (ad - bc)2 > 0
⇒ - 4 (ad - bc)2 < 0
⇒ D < 0.
Therefore, given equation has no real root.
Step-by-step explanation:
Answer:
make me branalist please
Step-by-step explanation:
According to question, the given equation is
x2(a2 + b2)+ 2x (ac + bd) +(c2 + d2)= 0 .
Let D be the discriminant of this equation.
Therefore,D = 4(ac + bd)2 - 4(a2 + b2)(c2 + d2)
⇒ D = 4 [(ac+ bd)2 - (a2 + b2) (c2 + d2)]
⇒ D = 4 [a2c2 + b2d2 + 2ac.bd - a2c2 - a2d2 - b2c2 - b2d2]
⇒D = 4 [2ac.bd - a2d2 - b2c2] = - 4[a2d2 + b2c2 - 2ad.bc] = -4(ad - bc)2
It is given that ad ≠ bc.
⇒ ad - bc ≠ 0
⇒ (ad - bc)2 > 0
⇒ - 4 (ad - bc)2 < 0
⇒ D < 0.
Therefore, given equation has no real root.