Math, asked by Shashawat1287, 11 months ago

( a²-b²)(c²-d²)-4abcd factories it

Answers

Answered by samirafrid
8

Answer:

(ac-bd+ad+bc)(ac-bd-ad-bc)

Attachments:
Answered by Cosmique
9

________________________

 \underline{ \underline{\large{ \color{blue}{ \bf{question}}}}}

Factorise

\bf  ({a}^{2}  -  {b}^{2} )( {c}^{2}  -  {d}^{2}) - 4abcd

\underline{ \underline{ \large{ \color{blue} \bf solution}}}

We have,

 \color{brown}  \small{ \bf({a}^{2}  -  {b}^{2} )( {c}^{2}  -  {d}^{2} ) - 4abcd} \\  \\   \color{brown}\small{ \bf  {a}^{2}  {c}^{2}  -  {a}^{2}  {d}^{2}  -  {b}^{2}  {c}^{2}  +  {b}^{2}  {d}^{2}  - 4abcd} \\  \\   \color{brown}\small{ \bf  {(ac)}^{2} -  {(ad)}^{2}  -  {(bc)}^{2} +  {(bd)}^{2} - 4abcd }

Rearranging the terms

 \color{brown}\small{ \bf  {(ac)}^{2} +  {(bd)}^{2} -  {(ad)}^{2}  -  {(bc)}^{2} - 4abcd   }

Taking

- 4abcd = - 2 abcd + ( - 2abcd)

 \color{brown}\small \bf  {(ac)}^{2} +  {(bd)}^{2} - 2abcd -  {(ad)}^{2} -  {(bc)}^{2}  - 2abcd    \\  \\  \color{brown} \small \bf  {(ac)}^{2}  +  {(bd)}^{2}  - 2(ac)(bd) -  ( {(ad)}^{2} +  {(bc)}^{2}  + 2(ad)(bc))

Using identity

\tiny \tt  {x}^{2}  +  {y}^{2}  + 2xy =  {(x  +  y)}^{2}

and

\tiny \tt  {x}^{2}  +  {y}^{2} - 2xy =  {(x - y)}^{2}

We will get

 \color{brown} \small \bf  {(ac - bd)}^{2}  - ( {(ad + bc)}^{2} )

Using identity

\tiny \tt  {x}^{2}  -  {y}^{2}   = (x + y)(x - y)

We will get

  \boxed{\small\bf \color{brown}(ac - bd + ad + bc) \: (ac - bd - ad - bc)}

________________________

Similar questions