a2-b2 how prove it...
Answers
Answered by
6
Forward: a2−b2=(a−b)(a+b)∀a,b∈Ra2−b2=(a−b)(a+b)∀a,b∈Rimplies RR is commutative
Let x=(a−b)x=(a−b). Then
x(a+b)=xa+xb=(a−b)a+(a−b)b=a2−ba+ab−b2x(a+b)=xa+xb=(a−b)a+(a−b)b=a2−ba+ab−b2
Then we note that a2−ba+ab−b2=a2−b2a2−ba+ab−b2=a2−b2iff −ba+ab=0−ba+ab=0 if and only if ab=baab=ba iff RR is commutative.
Backwards: RR is commutative implies a2−b2=(a−b)(a+b)∀a,b∈Ra2−b2=(a−b)(a+b)∀a,b∈R.
Let x=(a+b)x=(a+b). Then (a−b)x=ax−bx=a(a+b)−b(a+b)=a2+ab−ba−b2(a−b)x=ax−bx=a(a+b)−b(a+b)=a2+ab−ba−b2. RR is commutative, so ab−ba=0ab−ba=0, so a2+ab−ba−b2=a2−b2
Let x=(a−b)x=(a−b). Then
x(a+b)=xa+xb=(a−b)a+(a−b)b=a2−ba+ab−b2x(a+b)=xa+xb=(a−b)a+(a−b)b=a2−ba+ab−b2
Then we note that a2−ba+ab−b2=a2−b2a2−ba+ab−b2=a2−b2iff −ba+ab=0−ba+ab=0 if and only if ab=baab=ba iff RR is commutative.
Backwards: RR is commutative implies a2−b2=(a−b)(a+b)∀a,b∈Ra2−b2=(a−b)(a+b)∀a,b∈R.
Let x=(a+b)x=(a+b). Then (a−b)x=ax−bx=a(a+b)−b(a+b)=a2+ab−ba−b2(a−b)x=ax−bx=a(a+b)−b(a+b)=a2+ab−ba−b2. RR is commutative, so ab−ba=0ab−ba=0, so a2+ab−ba−b2=a2−b2
Aryan562002:
hii
Similar questions