Math, asked by shahidpasha4894, 11 months ago

(a2 + b2)x2 - 2(ac + bd)x + c2+d2=0
prove that a÷b=c÷d​

Answers

Answered by Anonymous
11

Given:

\fbox{\mathsf{ (a^2 + b^2)x^2 - 2(ac + bd)x + c^2+ d^2}}

Comparing them in the form Ax² + Bx + C, we get:

A = (a² + b²)

B = -2(ac + bd)

C = c² + d²

For zeroes of the polynomial

Discriminant, D = 0

\mathsf{\implies \: B^2 - 4AC = 0}

\mathsf{\implies \: [-2(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) = 0}

\mathsf{\implies \: 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2) = 0}

\mathsf{\implies \: 4[(ac + bd)^2 - (a^2 + b^2)(c^2 + d^2)] = 0}

\mathsf{\implies \: 4[a^2c^2 + b^2d^2 + 2abcd - (a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2)] = 0}

\mathsf{\implies \: 4[\cancel{a^2c^2} + \cancel{b^2d^2} + 2abcd - \cancel{a^2c^2} - a^2d^2 - b^2c^2 - \cancel{b^2d^2}] = 0}

\mathsf{\implies \:  2abcd - a^2d^2 - b^2c^2  = 0}

Transposing them to right side, we get

\mathsf{\implies \: a^2d^2 + b^2c^2 - 2abcd  = 0}

\mathsf{\implies \: (ad - bc)^2 = 0}

Square rooting them both sides, we get

\mathsf{\implies \: ad - bc = 0}

\mathsf{\implies \: ad = bc}

\huge\mathsf{\implies \: \frac{a}{b} = \frac{c}{d}}

Hence Proved

Similar questions