Math, asked by hemudevdas5723, 1 year ago

A2=by +cz, b2=cz+ax,c2=ax+by

Answers

Answered by MaheswariS
6

Answer:

Solution:

x=\frac{b^2+c^2-a^2}{2a}

y=\frac{a^2-b^2+c^2}{2b}

z=\frac{a^2+b^2-c^2}{2c}

Step-by-step explanation:

The given system of equations is solved by elimination method.

The system of equations is

by+cz=a^2...................(1)

cz+ax=b^2...................(2)

ax+by=c^2...................(3)

Adding these equations, we get

2ax+2by+2cz=a^2+b^2+c^2

2(ax+by+cz)=a^2+b^2+c^2

ax+by+cz=\frac{a^2+b^2+c^2}{2}....................(4)

(4)-(1) ⇒

ax=\frac{a^2+b^2+c^2}{2}-a^2

ax=\frac{a^2+b^2+c^2-2a^2}{2}

ax=\frac{b^2+c^2-a^2}{2}

x=\frac{b^2+c^2-a^2}{2a}

(4)-(2) ⇒

by=\frac{a^2+b^2+c^2}{2}-b^2

by=\frac{a^2+b^2+c^2-2b^2}{2}

by=\frac{a^2-b^2+c^2}{2}

y=\frac{a^2-b^2+c^2}{2b}

(4)-(3) ⇒

cz=\frac{a^2+b^2+c^2}{2}-c^2

cz=\frac{a^2+b^2+c^2-2c^2}{2}

cz=\frac{a^2+b^2-c^2}{2}

z=\frac{a^2+b^2-c^2}{2c}

Solution:

x=\frac{b^2+c^2-a^2}{2a}

y=\frac{a^2-b^2+c^2}{2b}

z=\frac{a^2+b^2-c^2}{2c}

Similar questions