A2 digit no is such that is 15 if the no. Formed by reversing the digit is less than the original no by 27 find the original number. Guys its answer gives you 90 points so please let give right answer
Answers
let tens digit of the original number be x
so original number,
10(x) + (15-x)
reversing digits mean
10(15-x) + x
therefore
[10(x) + (15-x)]-[10(15-x)+x] = 27
or 10x + 15-x - 150+10x-x = 27
or 10x + 10x + 15 - 150 -x - x = 27
or 20x - 135 -2x = 27
or 18x - 135 = 27
or 18x = 27 + 135
or 18x = 162
or x = 162/18
or x = 9
original number = 10(x) + (15-x)
= 10(9) + (15-9)
= 90+6
= 96
Answer:
let tens digit of the original number be x
so original number,
10(x) + (15-x)
reversing digits mean
10(15-x) + x
therefore
[10(x) + (15-x)]-[10(15-x)+x] = 27
or 10x + 15-x - 150+10x-x = 27
or 10x + 10x + 15 - 150 -x - x = 27
or 20x - 135 -2x = 27
or 18x - 135 = 27
or 18x = 27 + 135
or 18x = 162
or x = 162/18
or x = 9
original number = 10(x) + (15-x)
= 10(9) + (15-9)
= 90+6
= 96