a²-ma+1 is a equation
1.a-(1÷a)=?
Answers
Answer:
We know that while finding the root of a quadratic equation ax
2
+bx+c=0 by quadratic formula x=
2a
−b±
b
2
−4ac
,
if b
2
−4ac>0, then the roots are real and distinct
if b
2
−4ac=0, then the roots are real and equal and
if b
2
−4ac<0, then the roots are imaginary.
Here, the given quadratic equation a
2
−ma+1=0 is in the form ax
2
+bx+c=0 where a=1,b=−m and c=1.
(i) If the roots are equal then b
2
−4ac=0, therefore,
b
2
−4ac=0
⇒(−m)
2
−(4×1×1)=0
⇒m
2
−4=0
⇒m
2
=4
⇒m=±
4
⇒m=±2
(ii) If the roots are distinct then b
2
−4ac>0, therefore,
b
2
−4ac>0
⇒(−m)
2
−(4×1×1)>0
⇒m
2
−4>0
⇒m
2
>4
⇒m>±
4
⇒m>±2
(iii) If the roots are imaginary then b
2
−4ac<0, therefore,
b
2
−4ac<0
⇒(−m)
2
−(4×1×1)<0
⇒m
2
−4<0
⇒m
2
<4
⇒m<±
4
⇒m<±2
Hence m=±2 if the roots are equal, m>±2 if the roots are distinct and m<±2 if the roots are imaginary.
Step-by-step explanation: