a2b2+ abc -- 156c2
i)
Answers
Answered by
0
Answer:
Given:a
2
,b
2
,c
2
are in A.P
⇒b
2
−a
2
=c
2
−b
2
⇒k
2
sin
2
B−k
2
sin
2
A=k
2
sin
2
C−k
2
sin
2
B using sine rule a=ksinA,b=ksinB and c=ksinC
⇒sin(B+A)sin(B−A)=sin(C+B)sin(C−B)
⇒sin(π−C)sin(B−A)=sin(π−A)sin(C−B) since A+B+C=π
⇒sinCsin(B−A)=sinAsin(C−B)
⇒
sinA
sin(B−A)
=
sinC
sin(C−B)
⇒
sinAsinB
sin(B−A)
=
sinBsinC
sin(C−B)
sin(B−A)
=
sinC
sin(C−B)
⇒
sinAsinB
sin(B−A)
=
sinBsinC
sin(C−B)
⇒
sinAsinB
sinBcosA−cosBsinA
=
sinBsinC
sinCcosB−cosBsinC
⇒cotA−cotB=cotB−cotC
∴cotA,cotB,cotC are in A.P
hence Proved
Step-by-step explanation:
please mark as brainlist
Similar questions
Math,
2 months ago
Social Sciences,
2 months ago
Math,
2 months ago
English,
3 months ago
Geography,
11 months ago