Math, asked by rk092251, 2 months ago

a2x2-3abx+2b2=0
a2x2 - 3abx + 2b = 0

Answers

Answered by vijisquare
5

Answer: Hi ,

a² x² -3abx + 2b² = 0

a² x² - abx - 2abx + 2b² = 0

ax( ax - b ) - 2b( ax - b ) = 0

( ax - b )( ax -2b ) = 0

Therefore ,

( ax -b ) = 0 or ax -2b = 0

ax = b or ax = 2b

x = b / a or x = 2b / a

I hope this helps you.

:)

Answered by VelvetBlush
8

Given : \sf{ {a}^{2}  {x}^{2}  - 3abx +  {2b}^{2}  = 0}

➡️ \sf{{x}^{2}  -  \frac{3b}{a} x +  \frac{ {2b}^{2} }{ {a}^{2} }  = 0}

➡️\sf{ {x}^{2}  -  \frac{3b}{a} x =  -  \frac{ {2b}^{2} }{ {a}^{2} } }

➡️\sf{ {x}^{2}  - 2( \frac{3b}{2a} )x +  {( \frac{3b}{2a} )}^{2}  =  {( \frac{3b}{2a} )}^{2}  -  \frac{ {2b}^{2} }{ {a}^{2} }}

➡️\sf{ {(x -  \frac{3b}{2a}) }^{2}  =  \frac{ {9b}^{2} }{ {4a}^{2} }  -  \frac{ {2b}^{2} }{ {a}^{2} }  =  \frac{ {9b}^{2}  -  {8b}^{2} }{ {4a}^{2} }  =  \frac{ {b}^{2} }{ {4a}^{2} } }

➡️\sf{x -  \frac{3b}{2a}  =  +  \frac{b}{2a}  = x =  \frac{3b}{2a}  +  \frac{b}{2a}}

➡️\sf{x =  \frac{3b + b}{2a}  \: or \: x =  \frac{3b - b}{2a}}

➡️\sf{x =  \frac{2b}{a}  \: or \: x =  \frac{b}{a}}

Hence, the roots of the given equation are \sf{\frac{2b}{a}and\frac{b}{a}}

Similar questions