a³+1/a³=18 then prove A= (3 + √5)/2
Answers
Answered by
1
Answer:
htt wfhduaffsyagegyabeyabsgahusyuqg7wywh7
Explanation:
gatwyshywgztgesyeg disposals soap dp of so if go if go
Answered by
1
Explanation:
উত্তর টা a = (3 +/- √5)/2 হবে।
(a + 1/a)^3 = a^3 + 1/a^3 + 3.a.1/a (a + 1/a).
বা, a^3 + 1/a^3 = (a + 1/a)^3 - 3 (a + 1/a) = 18.
Or, (a + 1/a)^3 - 3(a + 1/a) - 18 = 0
Or, y^3 - 3a - 18 = 0 [ let (a + 1/a) = y ]
Or, y^3 - 3y^2 + 3y^2 - 9y + 6y - 18 = 0.
Or, (y - 3)(y^2 + 3y + 6) = 0
Or, (y - 3) = 0 & (y^2 + 3y + 6) = 0
Put y = a + 1/a, we get a + 1/a - 3 = 0
Or, a^2 - 3a + 1 = 0
Or a = [- ( - 3) +/- √{( - 3)^2 - 4. 1. 1}]/2.1
Or, a = [ 3 +/- √5]/2
Similar questions