a3 -3a2b +3ab2 -2b3 factorise
Answers
Answer:
a³-3a²b+3ab²-b³
=a³-b³+3ab²-3a²b
=(a-b)(a²+ab+b²) -3ab(a-b)
=(a-b)(a²-3ab+ab+b²)
=(a-b)(a-b)²
=(a-b)³
THODA ATTACHMENT ME NAZAR DAAL DENA :) GUD NI8 XD XD
a³ -3a²b +3ab² -2b³ = (a - 2b)(a² + b² - ab)
Given:
- a³ -3a²b +3ab² -2b³
To Find:
- Factors
Solution:
Factorization is finding factors which when multiplied together results in the original number.
(x - y)³ = x³ - 3x²y + 3xy² - y³
x³ - y³ = (x - y)(x² + y² + xy)
(x - y)² = x² + y² - 2xy
a³ -3a²b +3ab² -2b³
Step 1:
Rewrite -2b³ as -b³ - b³
a³ -3a²b +3ab² - b³ - b³
Step 2:
Use Identity (x - y)³ = x³ - 3x²y + 3xy² - y³ where x = a , y = b
( a - b)³ - b³
Step 3:
Use Identity x³ - y³ = (x - y)(x² + y² + xy) where x = (a-b) , y = b
(a - b - b)((a - b)² + b² +(a-b)b)
Step 4:
Simplify using (x - y)² = x² + y² - 2xy and distributive property and combining like terms
(a - b - b)(a² + b² - 2ab + b² + ab - b²)
(a - 2b)(a² + b² - ab)
Hence a³ -3a²b +3ab² -2b³ = (a - 2b)(a² + b² - ab)