Math, asked by drishtithakker17, 8 months ago

a3+3ab2/3a2b+b3=x3+3xy2/3x2y+y3 show x/a=y/b​

Answers

Answered by pulakmath007
64

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \displaystyle \sf{  \frac{ {a}^{3} + 3 a{b}^{2}  }{3 {a}^{2}b  +  {b}^{3} } =  \:    \frac{ {x}^{3} + 3 x{y}^{2}  }{3 {x}^{2}y  +  {y}^{3} }}

TO PROVE

 \displaystyle \sf{   \frac{x}{a}  =  \frac{y}{b} }

PROOF

 \displaystyle \sf{  \frac{ {a}^{3} + 3 a{b}^{2}  }{3 {a}^{2}b  +  {b}^{3} } =  \:    \frac{ {x}^{3} + 3 x{y}^{2}  }{3 {x}^{2}y  +  {y}^{3} }}

By the Componendo - Dividendo rule we get

 \displaystyle \sf{  \frac{ {a}^{3} + 3 a{b}^{2} +   3 {a}^{2}b  +  {b}^{3}}{ {a}^{3} + 3 a{b}^{2}  -   3 {a}^{2}b   -   {b}^{3} } =  \:    \frac{ {x}^{3} + 3 x{y}^{2}  +  3 {x}^{2}y  +  {y}^{3} }{{x}^{3} + 3 x{y}^{2}   -   3 {x}^{2}y   -   {y}^{3}  }}

 \implies \:  \displaystyle \sf{  \frac{ {(a + b)}^{3} }{ {(a  - b)}^{3}} =  \frac{ {(x + y)}^{3} }{ {(x  - y)}^{3}} \:  \: }

 \implies \:  \displaystyle \sf{  \frac{ {(a + b)}^{} }{ {(a  - b)}^{}} =  \frac{ {(x + y)}^{} }{ {(x  - y)}^{}} \:  \: }

Again by Componendo Dividendo Rule

 \implies \:  \displaystyle \sf{  \frac{ {(a + b + a + b)}^{} }{ {(a + b - a   +  b)}^{}} =  \frac{ {(x + y + x - y)}^{} }{ {(x + y - x   +  y)}^{}} \:  \: }

 \implies \:  \displaystyle \sf{   \frac{2a}{2b}  =  \frac{2x}{2y} }

 \implies \:  \displaystyle \sf{   \frac{a}{b}  =  \frac{x}{y} }

  \implies \: \displaystyle \sf{   \frac{x}{a}  =  \frac{y}{b} }

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

Answered by niharikahella848
90

Step-by-step explanation:

Hope this will help you..

Attachments:
Similar questions