Physics, asked by khushboo14191, 5 hours ago

{a³-(a-2)(a²-a-42)} divide (a²+6a)​

Answers

Answered by poonam847211devi
2

Answer:

I hope the given answer will help you

Attachments:
Answered by pulakmath007
0

SOLUTION

TO EVALUATE

\displaystyle \sf{   \frac{\{ {a}^{3} - (a - 2 ) \}( {a}^{2}  - a - 42) }{ {a}^{2}  + 6a} }

EVALUATION

\displaystyle \sf{   \frac{\{ {a}^{3} - (a - 2 ) \}( {a}^{2}  - a - 42) }{ {a}^{2}  + 6a} }

\displaystyle \sf{ =    \frac{\{ {a}^{3} - a  + 2  \}( {a}^{2}  - a - 42) }{ {a}^{2}  + 6a} }

\displaystyle \sf{ =    \frac{\{ {a}^{3} - a  + 2  \} \{ {a}^{2}  - (7 - 6)a - 42 \}}{ {a}^{2}  + 6a} }

\displaystyle \sf{ =    \frac{\{ {a}^{3} - a  + 2  \} \{ {a}^{2}  - 7a  + 6a - 42 \}}{ {a}^{2}  + 6a} }

\displaystyle \sf{ =    \frac{\{ {a}^{3} - a  + 2  \} \{a(a - 7)  + 6(a - 7) \}}{ {a}^{2}  + 6a} }

\displaystyle \sf{ =    \frac{\{ {a}^{3} - a  + 2  \} \{(a - 7) (a  + 6) \}}{ a(a + 6)} }

\displaystyle \sf{ =    \frac{\{ {a}^{3} - a  + 2  \}(a - 7) }{ a} }

\displaystyle \sf{ =    \frac{(a - 7) ({a}^{3} - a  + 2  )}{ a} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If p- 5 gives 12 then p is _____

https://brainly.in/question/22500317

2. A number when subtracted from 40 results into 15. This statement in the form of an equation

https://brainly.in/question/25043268

Similar questions