Math, asked by RonavRooney, 6 months ago

a3-b3=9 , a-b = 3 find 1/a+1/b​

Answers

Answered by Anonymous
3

Step-by-step explanation:

a^3 - b^3 = 9

(a - b)(a^2 + ab + b^2)=9

3(a^2 + ab + b^2) = 9

(a^2 + ab + b^2)=3

(a^2 - 2ab + b^2 + 3ab)=3

[(a - b)^2 + 3ab]=3

[9 + 3ab] = 3

3ab = -6

ab = -2

(a + b)=\sqrt{(a-b)^2+4ab}

(a + b)=\sqrt{9 + 4(-2)}

(a + b)=\sqrt{9 - 8}

(a + b)=\sqrt{1} = ±1

Now ,

\frac{1}{a} + \frac{1}{b}

\frac{(a + b)}{ab}

when , a+b=1

then ,

\frac{1}{-2}=-\frac{1}{2}

if , a+b=-1

\frac{-1}{-2}=\frac{1}{2}

Similar questions