(a3+b3)=(a-b)(a2+b2+ab)
Answers
Why is a³+b³= (a+b) (a²-ab+b²) if we don't have any negative sign?
We all know,
(a+b)³ = a³ + 3a²b + 3ab² + b³
Now solve the above equation to get the required equation,
or, a³+b³ = (a+b)³ - 3a²b - 3ab²
or, a³+b³ = (a+b)³ - 3ab(a + b)
or, a³+b³ = (a+b) {(a+b)² - 3ab}
or, a³+b³ = (a+b) {a² + 2ab + b² - 3ab}
or, a³+b³ = (a+b) {a² - ab + b²}
Let's check:
a³+b³ = (a+b) {a² - ab + b²}
Now solve only R. H. S, we get
(a+b) {a² - ab + b²}
= a³ - a²b + ab² + a²b - ab² + b³
cancel - a²b + a²b and + ab² - ab²
= a³+b³ = L. H. S (proved)
i.e. a³+b³ = (a+b) {a² - ab + b²}
If we do not have any negative sign then what will happen:
i.e. instead of using “-ab” we used “+ab”.
a³+b³ = (a+b) {a² + ab + b²}
Now solve R. H. S, we get
(a+b) {a² + ab + b²}
= a³ + a²b + ab² + a²b + ab² + b³
= a³ + 2a²b + 2ab² + b³
= a³+ b³ + 2ab(a+b) ≠ L. H. S
i.e. a³+b³ ≠ (a+b) {a² + ab + b²}
Negative sign is required to fulfill the above contention i.e. a³+b³=(a+b){a² - ab + b²}
hope you will understand and make me brainlist