a³ - b³ - c³ - 3abc =
Answers
Answered by
28
Hi ,
We know that ,
**************************************
An algebraic identity ,
x³ + y³ + z³ - 3xyz
= ( x+y+z)(x²+y²+z² -xy -yz -zx )
*************************************
Here ,
x = a , y = - b , z = -c
a³ + ( -b)³ + (-c)³ -3a(-b)(-c)
= (a-b-c)[ a² + (-b)²+(-c)²-a(-b)-(-b)(-c)-
(-c)a ]
Therefore ,
a³ - b³ - c³ - 3abc
=( a- b - c)[ a²+b²+c²+ab -bc + ca ]
I hope this helps you.
:)
We know that ,
**************************************
An algebraic identity ,
x³ + y³ + z³ - 3xyz
= ( x+y+z)(x²+y²+z² -xy -yz -zx )
*************************************
Here ,
x = a , y = - b , z = -c
a³ + ( -b)³ + (-c)³ -3a(-b)(-c)
= (a-b-c)[ a² + (-b)²+(-c)²-a(-b)-(-b)(-c)-
(-c)a ]
Therefore ,
a³ - b³ - c³ - 3abc
=( a- b - c)[ a²+b²+c²+ab -bc + ca ]
I hope this helps you.
:)
Answered by
5
a³➕b³➕c³=3abc
↔a³➕b³➕c³➖3abc=0
↔(a➕b➕c)✖(a²➕b²➕c²➖ab➖bc➖ca)=0
Similar questions