a³+b³+c³-3abc = a+b+c/2 ((a-b)²(b-c)²(c-a)²)
Answers
Question: Prove that a³ + b³ + c³ - 3abc = (a+b+c) [(a-b)² + (b-c)² +(c-a)²]
------------------
Answer
a³ + b³ + c³ - 3abc = (a+b+c) [(a-b)² + (b-c)² +(c-a)²]
We first write down the LHS, And expand it
(a+b+c) [(a-b)² + (b-c)² +(c-a)²]
(a+b+c) [a² + b² - 2ab + b² + c² - 2bc + c² + a² - 2ca]
Clubbing common terms and seperating them
(a+b+c) [2a² + 2b² + 2c²] [-2ab - 2bc - 2ca]
Since 2 is common on both brackets, we take it out.
2 {a² + b² + c²] [-ab - bc - ca]
(2 and 2 get cancelled)
{a + b + c} {a² + b² + c²] [-ab - bc - ca]
Now we multiply a, b, and c with the Highlighted terms.
a {a² + b² + c²] [-ab - bc - ca] + b {a² + b² + c²] [-ab - bc - ca] + c {a² + b² + c²] [-ab - bc - ca]
After multiplying this is the result. [All the bolded terms get cancelled]
a³ + ab² + ac² - a²b - abc - ca² + ba² + b³ + bc² - ab² - b²c - abc + ca² + cb² + c³ - cab - bc² - c²a
Now we write down the left out terms.
a³ - abc + b³ - bac + c³ - cab
a³ + b³ + c³ - abc - bac - cab
[Abc is repeated 3 times}
a³ + b³ + c³ - 3abc
LHS = RHS
Hence Proved :D
--------------------------------