a3 + b3 + c3 =?
Answer the question
Answers
Answer:
a3 - b3 - 3a2b + 3ab2 = 2ac (a + b)3 = a3 + b3 + 3a2b + 3ab2 (a - b)3
You can solve this question with the help of algebra-formulas.
a^3 + b^3 + c^3 - 3abc = (a+b+c) (a^2 + b^2 + c^2 - ab - bc -
ac).
= (a+b+c) { (a^2+b^2+c^2 + 2ab+2bc+2ac) - 3(ab+bc+ac) }
= (a+b+c) { (a+b+c)^2 - 3(ab+bc+ac) }
= (a+b+c)^2 - 3(ab+bc+ac)(a+b+c)
= (a+b+c)^2 - 3a^2b - 3ab^2 - 3abc - 3abc - 3b^2c - 3bc^2 - 3a^2c - 3abc - 3ac^2
= (a+b+c)^2 - 3ab(a+b) - 3bc(b+c) - 3ca(c+a) - 9abc
therefore,
a^3 + b^3 + c^3 = (a+b+c)^2 - 3ab(a+b) - 3bc(b+c) - 3ca(c+a)
- 6abc.
Can you tell about it, This answer is right or not and have a any other method for solving this question?
Step-by-step explanation:
Hope it helps ;)
Answer:
Mark as brainliest and follow me
Step-by-step explanation:
a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)