Math, asked by lollololololol, 1 year ago

a4+1/a4 =2 find a8+1/a8

Answers

Answered by jsaidisha
3
Hi here is your answer
Hope it helps u!!!

Attachments:
Answered by Anonymous
8

Correct Question :-

If  \sf a^4 + \dfrac{1}{a^4}  , the find  \sf a^8 + \dfrac{1}{a^8}  .

Answer :-

 \tt a^{8}  + \dfrac{1}{a^8}  =2

Solution :-

 \sf a^4 +  \dfrac{1}{a^4} = 2

Squaring on both sides

 \sf  \left( a^4 +  \dfrac{1}{a^4} \right)^2   = {(2)}^2

 \sf  \left( a^4 +  \dfrac{1}{a^4} \right)^2   = 4

We know that

(x + y)² = x² + y² + 2xy

Here,

 \tt x =  {a}^{4} \: and \:y = \dfrac{1}{ {a}^{4} }

By substituting the values

 \sf  {( {a}^{4} )}^{2}  +  \left( \dfrac{1}{a^4} \right)^2 + 2 \times  {a}^{4} \times  \dfrac{1}{ {a}^{4} }    = 4

 \sf  {( {a}^{4} )}^{2}  +  \left( \dfrac{1}{a^4} \right)^2 + 2= 4

 \sf a^{4(2)}  + \dfrac{ {1}^{2} }{(a^4 )^{2} } + 2= 4

 \sf a^{8}  + \dfrac{1}{a^{4(2)} } + 2= 4

 \sf a^{8}  + \dfrac{1}{a^8} + 2= 4

 \sf a^{8}  + \dfrac{1}{a^8}  =4 - 2

 \sf a^{8}  + \dfrac{1}{a^8}  =2

 \bf \therefore a^{8}  + \dfrac{1}{a^8}  =2

Identity used :-

• (x + y)² = x² + y² + 2xy

Similar questions