Math, asked by Lenkabirakeshore, 5 months ago

a⁴+3a²+4.factorize the term​

Answers

Answered by priyel
0

Step-by-step explanation:

Let a²=x

 \bf \therefore \:  {x}^{2}  + 3x + 4

 \tt \: x\implies \large \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\\tt \: x\implies \:  \frac{ -3 \pm \sqrt{ {(3)}^{2} - 4 \times 1 \times 4 } }{2 \times 1}   \\  \\ \tt \: x\implies \frac{ - 3 \pm \sqrt{9 - 16} }{2}  \\  \\ \tt \: x\implies \frac{ - 3  \pm \sqrt{ - 7} }{2}  \\  \\ \tt \: x\implies \frac{ - 3 +  \sqrt{ - 7} }{3} or \:  \frac{ - 3 -  \sqrt{ - 7} }{2}  \\  \\  \boxed{\tt \: x\implies \frac{ - 3 +7i}{3} or \:  \frac{ - 3 - 7i }{2} .....(i =  \sqrt{ - 1} )} \\  \\  \sf {x}^{2} \implies \frac{ - 3 + 7i}{3}  \times  \frac{ - 3 + 7i}{3}   \\  \\  \sf {x}^{2} \implies \frac{9 - 21i - 21i + 49 {i}^{2} }{9}  \\  \\ \sf {x}^{2} \implies \frac{9 - 42i - 49}{9}  \\  \\ \sf {x}^{2} \implies \frac{ - 40 - 42i}{9}  \\  \\  \sf {x}^{2} \implies \: a

Similar questions