a⁴ – (b+c)⁴, Factorise the expression.
Answers
Answered by
21
Solution :
a⁴ - ( b + c )⁴
= ( a² )² - [ ( b + c )² ]²
*********************************
By algebraic identity :
x² - y² = ( x + y )( x - y )
*********************************
= [ a² + ( b + c )² ] [ a² - ( b + c )² ]
= ( a² + b² + c² + 2bc ){ [a+(b+c)][a-(b+c)]}
=( a²+b²+c²+2bc )( a+b+c )( a-b-c )
••••
a⁴ - ( b + c )⁴
= ( a² )² - [ ( b + c )² ]²
*********************************
By algebraic identity :
x² - y² = ( x + y )( x - y )
*********************************
= [ a² + ( b + c )² ] [ a² - ( b + c )² ]
= ( a² + b² + c² + 2bc ){ [a+(b+c)][a-(b+c)]}
=( a²+b²+c²+2bc )( a+b+c )( a-b-c )
••••
Answered by
9
a⁴ - ( b + c )⁴
( a² )² - { ( b + c )² }²
• By using : ( a )² - ( b )² = ( a + b )( a - b )
{ a² - ( b + c )² }{ a² + ( b + c )² }
• By using : ( a + b )² = a² + b² + 2ab
[ ( a )² - { b + c }² ][ a² + ( b² + c² + 2bc ) ]
[ { a - ( b + c ) }{ a + ( b + c ) } ][ a² + b² + c² + 2bc ]
( a - b - c )( a + b + c )( a² + b² + c² + 2bc )
Factoized.
Therefore, a⁴ - ( b + c )⁴ = ( a - b - c )( a + b + c )( a² + b² + c² + 2bc )
( a² )² - { ( b + c )² }²
• By using : ( a )² - ( b )² = ( a + b )( a - b )
{ a² - ( b + c )² }{ a² + ( b + c )² }
• By using : ( a + b )² = a² + b² + 2ab
[ ( a )² - { b + c }² ][ a² + ( b² + c² + 2bc ) ]
[ { a - ( b + c ) }{ a + ( b + c ) } ][ a² + b² + c² + 2bc ]
( a - b - c )( a + b + c )( a² + b² + c² + 2bc )
Factoized.
Therefore, a⁴ - ( b + c )⁴ = ( a - b - c )( a + b + c )( a² + b² + c² + 2bc )
Similar questions