Math, asked by mokshitha5845, 1 year ago

a5+b5/a+b = , without actual division algebra​

Answers

Answered by sk940178
5

Answer:

a^{4}-a^{3}b+a^{2}b^{2}-ab^{3}+b^{4}

Step-by-step explanation:

We have to find the value of \frac{(a^{5}+b^{5})}{a+b}, without actual division algebra.

Clearly putting a=-b the expression (a^{5}+b^{5}) becomes zero.

So, (a+b) is definitely a factor of (a^{5}+b^{5}) term.

Now we can express (a^{5}+b^{5}) in the following form:

(a^{5}+b^{5})

= (a^{5}+a^{4}b)-(a^{4}b+a^{3}b^{2})+(a^{3}b^{2}+a^{2}b^{3})-(a^{2}b^{3}+ab^{4})+(ab^{4}+b^{5})

= a^{4}(a+b)-a^{3}b(a+b)+a^{2}b^{2}(a+b)-ab^{3}(a+b)+b^{4}(a+b)

= (a+b)(a^{4}-a^{3}b+a^{2}b^{2}-ab^{3}+b^{4})

So, it can be written that,

\frac{(a^{5}+b^{5})}{a+b}=a^{4}-a^{3}b+a^{2}b^{2}-ab^{3}+b^{4}

(Answer)

Similar questions