a8+a4+1 factorization
Answers
Answer:
hey mate
Here's ur answer.....
(a^4)^2 + (a^2)^2 + 1 =0
let us consider a^2 as m
m^2+m+1=0
This can't be factorize further....
I think so the question is wrong.....
it should be like-
a^8+2a^4+1=0
m^2+2m+1=0
m^2+m+m+1=0
m(m+1)+1 (m+1)=0
(m+1)(m+1)=0
m=-1,-1.....
but m=a^2
a=1,1.......
hope it helps
Fllw karna mat bhulyo and mark it as brainliest. dude
Answer:
a8 + a4 + 1 = (a^2 + 1 - a)(a^2 +1 + a)(a^4 + 1 -a^2)
Step-by-step explanation:
Use the method of Completing Square :
= (a^4)^2 + 1 + a^4 + 2(1)(a^4) -2(1)(a^4)
using formula of (a+b)^2 = a^2 + b^2 + 2ab
Given expression becomes :
= (a^4 + 1)^2 + a^4 - 2a^4
= (a^4 +1)^2 - a^4 = (a^4 +1)^2 - (a^2)^2
Using formula of a^2 - b^2 = (a+b)(a-b)
= (a^4 +1 + a^2) (a^4 +1 - a^2)
again complete square of bolded term
= (a^4 +1 - a^2) (a^4 +1 + a^2)
= (a^4 +1 - a^2) ( a^2^2 + 1 + 2a^2 -2a^2 +a^2)
use formula of (a^2 + b^2 +2ab) = (a+b)^2
= (a^4 +1 - a^2) [(a^2 + 1 )^2 - 1a^2)
Using formula of a^2 - b^2 = (a+b)(a-b)
= (a^4 +1 - a^2) ( a^2 +1 - a ) ( a^2 +1 +a)