Math, asked by Sofiakhan, 1 year ago

Aa ladder 13 metre long reaches which is 5 metre above the ground on one side of the street Keeping It foot at the same point the ladder is turned to the other side of the street to reach a window at a height of 12 metre find the width of the street Please send me answer ​

Answers

Answered by nkbr38
0

Answer:

use pythogras theorum to calculate bases of both

Attachments:
Answered by Anonymous
3

 {\underline{\large {\sf{✠  \: Diagram \: ✠}}}}

{ \underline{\large{ \sf{✠  \: Solution \: ✠}}}}

⇒Let PQ be the street and R be the foot of the ladder.

⇒Let S an T be the windows at the height of 5m and 12m respectively from the ground.

⇒Then, RS and RT are the two positions of the ladder.

  • ⇛Clearly, PS = 5m, QT = 12m, RT = RS = 13m.

From right ∆SPR, we have

 \\  \sf \: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  P {R}^{2}  + P {S}^{2}  = R {S}^{2}  \\   \\   \implies  \:  \: \:  \:  \   \sf \: P{R}^{2} = R {S}^{2} - P {S}^{2} \\  \\  \implies \:  \:  \:  \:    \sf \: P {R}^{2} =  ({13}^{2}  -  {5}^{2}) {m}^{2}   \\  \\  \:  \:  \:  \implies \:  \:  \:  \:  \:  \:  \sf \: P {R}^{2} = (169 - 25) {m}^{2}   \\  \\    \implies \:  \:  \:  \:  \:  \:  \sf \: P {R}^{2} =  {144} {m}^{2}  \:  \:  \:  \:  \\  \\  \implies \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \sf P {R}^{2} = ( {12) }^{2}  {m}^{2}  \\  \\  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: P {R} = 12m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

From right ∆RQT,

 \\ \:   \sf \: RQ²+ QT²= RT² \\  \\  \implies \:  \:  \:  \:  \:  \:  \sf \: RQ²  =  RT² - QT²  \:  \:  \:  \: \\  \\   \implies \:  \:  \:  \:  \:   \sf \: RQ² = ( {13}^{2}  -  {12}^{2} ) {m}^{2}  \\  \\  \implies \:  \:  \:  \:  \:  \:  \sf \: RQ² = (169 - 144) {m}^{2}  \\  \\  \implies \:  \:  \:  \:  \:  \:  \:  \sf \: RQ² = 25 {m}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \:  \:  \:  \:  \:  \:  \sf \: RQ² = ( {5})^{2}  {m}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: RQ = 5m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \\  \\  {\large{ \ { \boxed{ \underline {\pink{ \rm{ \therefore{width \:  of  \: the  \: street= PQ=PR+RQ=(12+5)m=17m}}}}}}}}

Attachments:
Similar questions