Math, asked by mfk008522, 16 days ago

AABC is a right angled triangle. 2B = 90° a perpendicular line from B to AC intersect AC at D. Prove that AABC, AADB and ABCD are similar to each other.​

Answers

Answered by josephdayani9
0

Answer:

To Prove : △ADE∼△ACB

Proof :

(i) In △ADE and △ACB

(1) ∠A=∠A [common]

(2) ∠AED=∠ABC=90

o

(given)

∴ △ADE∼△ACB [AA axiom]

(ii) (AC)

2

=(AB)

2

+(BC)

2

169=(AB)

2

+25

AB=12cm

∵ △ADE∼△ACB

BC

DE

=

AC

AD

=

AB

AE

BC

DE

=

AB

AE

5

DE

=

12

4

DE=

12

20

=

3

5

=1

3

2

cm

Now,

AC

AD

=

AB

AE

13

AD

=

12

4

AD=

12

13×4

=

3

13

=4

3

1

cm.

(iii)

Ar.of(△ADE)

Ar.of(△ABC)

=

AE

2

AB

2

=

16

144

=

1

9

Ar.of(△ADE)

Ar.of(△ADE)+Ar.of(BCED)

=9

1+

Ar.of(△ADE)

Ar.of(BCED)

=9

Ar.of(BCED)

Ar.of(△ADE)

=

8

1

Similar questions