आकृती मध्ये समांतरभुज चौकोन आहे. किरण AB वर बिंदू E असा आहे की BE = AB. तर सिद्ध करा, की रेषा ED ही रेख BC ला F मध्ये दुभागते.
Attachments:
Answers
Answered by
2
Solution :
Given :
ABCD is a parallelogram .
AB = BE (given)----( 1 )
To prove : F is the midpoint
of BC ( BF = FC )
Proof :
In ∆BEF and ∆DCF
BE = DC [ S ]
{ Since , AB = DC opposite
sides of a parallelogram.
And BE = DC from (1) }
<FBE = <FCD
[Alternate angles ]
<BEF = <CDF
[ Alternate angles ]
Therefore ,
∆BEF is congruent to ∆DCF
[ ASA congruence rule ]
BF = FC [ CPCT ]
F is the midpoint of BC.
Hence , prooved .
•••••
Similar questions