AB =10 BC=15 DE perpendicular to AC AD angel bisector of A then , find DE
Attachments:
Answers
Answered by
0
Step-by-step explanation:
Given :
∠A = 90°
AD is the bisector of ∠A
DE ⊥ AC
AB = 10 cm
AC = 15 cm
To find :
The length of DE
Concept used :
Similarity of Triangle
As AD is the bisector of ∠CAB
So, ∠EAD = 90°/2
⇒ ∠EAD = 45°
In ΔEAD
⇒ ∠AED + ∠EAD + ∠EDA = 180°
⇒ 90° + 45° + ∠EDA = 180°
⇒ ∠EDA = 180° - 135°
⇒ ∠EAD = 45°
So. EA = ED
Let ED be x
⇒ EC = 15 - x
In ΔCED and ΔCAB
⇒ ∠C = ∠C (common)
⇒ ∠CED = ∠CAB = 90°
So, ΔCED ~ ΔCAB (AA)
⇒ (ED)/(AB) = (CE)/(CA)
⇒ x/10 = (15 - x)/15
⇒ 15x = 10(15 - x)
⇒ 15x = 150 - 10x
⇒ 15x + 10x = 150
⇒ 25x = 150
⇒ x = 150/25
⇒ x = 6
∴ The length of DE is 6 cm.
Similar questions