Math, asked by KishanEinstein, 9 months ago

AB=10cm BC= 5cm
AC=5 root 3 cm
Find tan a . tan b​

Answers

Answered by amansoni4
1

Answer:

as pythagoras theorm is applicable so it is right angle triangle right angled at c

tan.a = 5root 3/5

tan.b = 5/5root3

tan.a . tanb = 1

Answered by rajanmol633
0

Answer:

The value of \bold{\sin A=\frac{5}{13}, \ {Tan} A=\frac{5}{12}, \sin C=\frac{12}{13}, \quad \cot C=\frac{5}{13}}sinA=

13

5

, TanA=

12

5

,sinC=

13

12

,cotC=

13

5

.

Solution:

The triangle ABC is drawn below which is

In the triangle ABC angle B is 90 degree. The “length of the side AB” = 12cm and the “length of the side BC” = 5cm.

Now to find the “length of side AC” we use Pythagoras theorem we get A B^{2}+B C^{2}=A C^{2}AB

2

+BC

2

=AC

2

\sqrt{A B^{2}+B C^{2}}=A C

AB

2

+BC

2

=AC

=\sqrt{12^{2}+5^{2}}=

12

2 +5

7

=\sqrt{144+25}=13=

144+25

=13

Now the question says to find 1) Sin A and Tan A, 2) Sin C and Cot C.

So using the formula, we get

\sin A=\frac{\text {height}}{\text {hypotenuse}}=\frac{B C}{A C}=\frac{5}{13}sinA=

hypotenuse

height = AC

BC = 135

\tan A=\frac{\text {height}}{\text {base}}=\frac{B C}{A B}=\frac{5}{12}tanA=base

height= AB

BC = 125

\sin C=\frac{\text {height}}{\text {hypotenuse}}=\frac{A B}{A C}=\frac{12}{13}sinC=

hypotenuse

height= AC

AB = 1312

\cot C=\frac{\text {base}}{\text {height}}=\frac{B C}{A B}=\frac{5}{13}cotC=

height

base=AB

BC=135

Therefore, the value of \sin A=\frac{5}{13}, \ {Tan} A=\frac{5}{12}, \sin C=\frac{12}{13}, \quad \cot C=\frac{5}{13}sinA=

13

5 , TanA= 12

5,sinC=

13

12 ,cotC.... ..

Similar questions