Math, asked by adi7508, 3 months ago

ab=2 , bc=3 , cd=4 , de=5 , find e/a​

Answers

Answered by user0888
5

Question

Given ab=2, bc=3, cd=4, and de=5, find \dfrac{e}{a}.

Solution

  • Find ways to isolate e and a.

Multiplying altogether,

ab^2c^2d^2e=120

\Longleftrightarrow\dfrac{ab^2c^2d^2e}{a^2b^2c^2d^2} =\dfrac{120}{a^2b^2c^2d^2}

\therefore \dfrac{e}{a} =\dfrac{120}{(abcd)^2} ...(I)

Finding product of ab\times cd,

abcd=6

\therefore (abcd)^2=36

Then (I) becomes

\dfrac{e}{a} =\dfrac{120}{36}

\therefore \dfrac{e}{a} =\dfrac{10}{3}

More information

The method of multiplying altogether is used in equation solving.

For example, when we solve

\begin{cases} &ab= 2\\  &bc= 4\\  &ca= 8\end{cases}

We multiply altogether to get

(abc)^2=16, then abc=\pm4 ...(I)

Dividing (I) by each equation,

\therefore\begin{cases} & a= \pm1\\  & b= \pm\dfrac{1}{2}\\  & c= \pm2\end{cases}

Similar questions