Math, asked by abhinandan77, 3 months ago

ab(a^2+b^2) and evaluate as ,a =2 and b =1/2​

Answers

Answered by aryan073
3

Given :

Evaluate :

 \red \bigstar \bf \: ab( {a}^{2}  +  {b}^{2} )

To Find :

• The remaining values of this equation =?

Solution :

Given values :

 \bullet \bf \: a = 2

  \\ \bullet \bf \: b =  \frac{1}{2}

Substituting the values a and b in given equation

 \implies \bf \: ab( {a}^{2}  +  {b}^{2} )

 \\  \implies \sf 2 \times  \frac{1}{2}  \bigg( {(2)}^{2}  +   { \bigg( \frac{1}{2} \bigg) }^{2}  \bigg)

 \\  \implies \sf \: 1 \bigg(4 +  \frac{1}{4}  \bigg)

 \implies \boxed{ \bf{ \frac{17}{4} }}

The remaining values of this equation is

 \implies \boxed { \tt{ \frac{17}{4} }}

Answered by rk4846336
3

Answer:

ab(a {}^{2}  + b {}^{2}) \\  \\ a = 2 \:   \:  \:, b =  \frac{1}{2}   \\  \\ ab(a {}^{2}  + b {}^{2}) \\  = 2 \times  \frac{1}{2} [{2}^{2}  +  (\frac{1}{2}  ){}^{2} ] \\  </p><p>= [4 +  \frac{1}{4} ] \</p><p>=[ \: \frac{16 + 1}{4}  ] \\</p><p>= [ \frac{17}{4} ]

hope you got it

thanks

Similar questions