AB+AbarCbar+ABbarC (AB+C) =1
Answers
Answered by
0
Explanation:
How do I prove that AB+(AC)' +AB'C (AB + C) = 1?
Taking L.H.S we have,
=AB+(AC)’+AB'C(AB+C)
=AB+A’+C’+AB’CAB+AB’CC {Applying De Morgan’s law on (AC)’}
=AB+A’+C’+0+AB’C {AB’CAB=0 because B.B’=0}
=AB+A’+C’+AB’C
=A(B+B’C)+A’+C’
=A(B+B’)(B+C)+A’+C’ {B+B’=0}
=A(B+C)+A’+C’
=AB+AC+A’+C’
=(A’+AB)+(C’+AC)
=(A’+A)(A’+B)+(C’+C)(C’+A) {A+A’=1 and C+C’=1}
=A’+B+A+C’
=A’+A+B+C’
=1+B+C’ {A’+A=1}
=1 {1+B+C’=1 because any variable OR-ING with 1 gives the result 1}
=R.H.S Hence Proved .
Similar questions