Math, asked by saisiddu, 4 months ago

ab = ac ad is bisector of angle a meeting bc at d prove abd conguunet adc and ad ⊥ bc

Answers

Answered by CopyThat
5

Given :-

  • AB = AC
  • AD is bisector of ∠A meeting BC at D

Required to prove :-

  • ΔABD ≅ ΔACD
  • AD ⊥ BC

Solution

  • In ΔABD and ΔADC
  • AB = AB  (given)
  • ∠BAD = ∠DAC  (given)
  • AD = AD  (common side)
  • ∴ ΔABD ≅ ΔADC  (side angle side rule)
  • ΔADB + ΔADC  (corresponding parts of congruent triangles)
  • ∠ADB + ∠ADC = 180°  (linear pair)
  • 2∠ADB = 180°
  • ∠ADB = 180/2
  • ∠ADB = 90°
  • ∴ AD ⊥ BC
Answered by Anonymous
3

In ΔABD and ΔADC

AB = AB  (given)

∠BAD = ∠DAC  (given)

AD = AD  (common side)

∴ ΔABD ≅ ΔADC  (side angle side rule)

ΔADB + ΔADC  (corresponding parts of congruent triangles)

∠ADB + ∠ADC = 180°  (linear pair)

2∠ADB = 180°

∠ADB = 180/2

∠ADB = 90°

∴ AD ⊥ BC

Similar questions