Math, asked by tricky9, 1 year ago

AB and AC are two chord of a circle of radius r, such that AB=AC . if p and q are the distances AB and AC from the centre . prove that 4q2=p2+3r2

Answers

Answered by BrainlyQueen01
356
Hi there !

_______________________

Given :

AB and AC are two chords of a circle of radius r such that AB= 2AC.

P and q are the perpendicular distances of AB and AC from the centre O, that is

OM = p and ON = q

And 'r' is the radius of the circle.

To prove :

\mathsf {4q {}^{2} = p {}^{2} + 3r {}^{2}}

Construction ; Join OA.

PROOF :

OM and ON are the perpendicular distances of AB and AC from the centre O.

AN =  \mathsf {\frac {AC} {2} }

AM =  \mathsf {\frac {AB} {2} }

[Because these are perpendicular from center to chord]

In right angled ΔONA,

\mathsf{ON {} ^{2} + NA{} ^{2} = OA{} ^{2}}

\mathsf{q {} ^{2} + NA{} ^{2} = r{} ^{2}}

\mathsf{NA {} ^{2} = r{} ^{2} - q{} ^{2}} .... (i)

In right angled ΔONA,

\mathsf{OM {} ^{2} + AM{} ^{2} = OA{} ^{2}}

\mathsf{p {} ^{2} + AM{} ^{2} = r{} ^{2}}

\mathsf{AM {} ^{2} = r{} ^{2} - p{} ^{2}}....(ii)

Since,

AM =  \mathsf {\frac {AB} {2} =\frac {2AC} {2} = AC = 2NA}

Now, from (i) and (ii), we have ;

 \mathsf{r {}^{2} - p {}^{2} = AM {}^{2} = (2NA) {}^{2} = 4NA {}^{2} } \\ \\ \mathsf{r {}^{2} - p {}^{2} = 4[r {}^{2} - q {}^{2} ] } \\ \\ \mathsf{r {}^{2} - p {}^{2} = 4r {}^{2} - 4q {}^{2} } \\ \\ \mathsf{4 q {}^{2} = 3r {}^{2} + p {}^{2} }

Hence, it is proved !

_______________________

Thanks for the question !

☺️❤️☺️
Answered by adityajadhavv08
76

let ac=a then ab=2a

seg om⊥ac seg on ⊥ seg ab

an=nb=a

am=mc=a

in ΔOMA

OA²=OM²+AM²

     =q²+a²/2²

       =q²+a²/4⇒1

in Δ ONA

OA² =AN²+ON²

      =a²+p² ⇒2

from eq 1 and 2

a²/4 + q²=p²+a²

a²+ 4q²=4p²+4a²

4q²= 4p²+3a²

4q²=p²+3(p²+a²)

4q²=p²+3r²                                                              from eq 2

hence proved

Similar questions